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Abstract

This paper presents parameter identification for the single-degree-of-freedom (SDOF) system. The proposed method

uses an autoregressive moving average (ARMA) model and a bisection method with the free acceleration response of the

system to an impact test. The method has been tested on the numerically integrated accelerations from a known SDOF

system. The experiment has been conducted on cutting system with an end mill. The validity and advantages of the method

are presented. The results show that the proposed method gives parameter identification with good quality for short

accelerations using the ARMA model and the bisection method for the SDOF system.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A good modeling method of the real system is important in engineering practice. The modeling method is to
determine the parameters of the equation of motion for the system based on information contained in the
system’s dynamical response. There are several methods to identify the parameters of the system from the
dynamical behavior. Tobias [1] modeled a single-degree-of-freedom (SDOF) system with the displacement
response at each exciting frequency using an exciter. Badrakhan [2] considered the free vibrations of a SDOF
system with combined viscous damping and Coulomb dry friction using only the amplitude decay of the
displacement response of the system. Ying and Joseph [3] presented the identification of a stable linear system
using polynomial kernels. Sekavcnik [4] discussed the identification of model damping parameters. Nonlinear
systems are also approached in several different ways [5–9].

This paper proposes a modeling method of the mass, the damping coefficient and the stiffness of the linear
SDOF system. It uses an autoregressive moving average (ARMA) model and a bisection method with the free
acceleration response of the system to an impact test. The ARMA model obtains the system’s equivalent
viscous damping ratio and natural frequency from the measured accelerations, and the bisection method
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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determines the system’s mass, damping coefficient and stiffness. The method, as it will be seen, provides
a direct and accurate means of obtaining the parameters of the equation of motion for the linear SDOF
system.

The SDOF has being widely used in engineering practice. The proposed modeling method was
experimentally applied to the cutting system because one of the fields that use the SDOF is cutting. The
stability of machine-tool chatter forms a key factor in the determination of the rate of metal removal and is the
cause of poor surface finish and annoying noise. In order to solve these kinds of problems, the cutting system
is considered to be the linear SDOF system, and this system is used to analyze the chatter vibration [10–15]
and to predict the dynamic surface topography [16–18]. So, the proposed method is applied to an end mill to
see the validity and advantages.

In Section 2, the mathematical fundamentals of the proposed method are presented using the ARMA
model and the bisection method. Section 3 presents parameter identification procedure. Section 4 presents
the results from a simulation study with the numerically integrated accelerations from a known SDOF
system. The application of the method to an end mill is presented in Section 5. Conclusions are given
in Section 6.
2. Theoretical considerations

Scalar ARMA models can be fitted to any single series of data. When a n-DOF system is subjected to an
impact force, the displacements, velocities, and accelerations can be modeled by ARMA models, and
from these models the natural frequencies and damping ratios of the system can be obtained. The signals of
the n-DOF system are modeled by an ARMA(2n,2n–1) model, the details of this model being available in
the literature [19]. A stationary stochastic signal, X ðtÞ, can be represented by a continuous ARMA(n,m)
model:

ð1� f1D� f2D2 � � � � � fn�1Dn�1 � fnDnÞX ðtÞ

¼ ð1� y1D� y2D2 � � � � � � � ym�1D
m�1 � ymDmÞZðtÞ,

mpn� 1; E½ZðtÞ� ¼ 0; E½ZðtÞZðt� uÞ� ¼ dðuÞs2a (1)

where D ¼ d=dt is the differential operator, ZðtÞ is the white noise, E denotes the expectation operator, dðuÞ is
the Dirac delta function, f1;f2; . . . ;fn are the autoregressive parameters and y1; y2; . . . ; ym are the moving
average parameters.

The model can be written as

X ðtÞ ¼
ð1� y1D� y2D2 � � � � � ynDmÞ

ð1� f1D� f2D
2 � � � � � fnDnÞ

¼
YðDÞ
FðDÞ

ZðtÞ. (2)

The discrete characteristic equation of the model is
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where D is the sampling interval, and li; l
�
i are complex conjugates.
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3. Parameter identification procedure

In order to obtain the mass m, the damping coefficient c and the stiffness k of the SDOF system, let us
consider the differential equation of motion

m €xðtÞ þ c _xðtÞ þ kxðtÞ ¼ dðtÞ, (6)

where dðtÞ is the impact force. If the system is excited by an impact force as shown in Eq. (6), the accelerations
of the system decay with time oscillating with a natural frequency and a damping ratio. When the
accelerations of the system are acquired from an impact test, the natural frequency and the damping ratio of
the system can be obtained from Eqs. (4) and (5), respectively.

The ARMA(2,1) model can obtain two of the characteristic values of the system: the natural frequency and
the damping ratio. However, three parameters need to be obtained: m, c, and k. We can obtain these three
parameters using the impact force and the bisection method. Using the natural frequency and the damping
ratio obtained from the ARMA(2,1) model after the impact test, a new equation of motion can be written:

€xðtÞ þ 2zon _xðtÞ þ o2
nxðtÞ ¼ dðtÞ. (7)

If the same impact force dðtÞ as used in Eq. (6) excites Eq. (7), the natural frequency and the damping ratio
of Eq. (7) are the same as those of Eq. (6), but the amplitudes of the accelerations are different. Multiplying by
a mass m0, that is assumed to be smaller than the real value, gives a new equation of motion:

m0 €xðtÞ þ 2zonm0 _xðtÞ þ o2
nm0xðtÞ ¼ dðtÞ. (8)

The accelerations in Eq. (8) can be integrated numerically using the same impact force dðtÞ and the same
sampling frequency as those from Eq. (6). While gradually increasing the mass m0, let us compare the root
mean square (RMS) of the simulated accelerations in Eq. (8) with the RMS of the accelerations measured
using Eq. (6). When the RMS of the simulated accelerations is within a tolerance value of the RMS of the
measured accelerations, it can be considered that Eq. (8) is nearly the same as Eq. (6). The bisection method
locates the value of m0 quickly and easily, as the RMS of the acceleration in Eq. (8) decreases linearly with
increasing m0.
Fig. 1. The modeling procedure using the bisection method.
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The modeling procedure can be summarized as follows (also see Fig. 1):

Step 1: Define a mass m1 that is smaller than the real value, and a mass m2 that is larger than it, and a
tolerance value t0 to use in the bisection method.
Step 2: Obtain the natural frequency and the damping ratio using the ARMA(2,1) model from the
accelerations measured in the impact test.
Step 3: Obtain the RMS of the measured accelerations, Rexp.
Step 4: Set the mass m0 ¼ ðm1 þm2Þ=2 and construct an equation of motion using Eq. (8), then integrate
the accelerations of this equation using the same impact force and sampling interval as the experiment.
Step 5: Obtain the RMS of the integrated accelerations, Rint.
Step 6: If jRint � Rexpj4t0, go to Step 7, otherwise, finish the modeling procedure setting m ¼ m0,
c ¼ 2zonm0, k ¼ o2

nm0.
Step 7: If Rint4Rexp, set m1 ¼ m0 and go to Step 4, otherwise, set m2 ¼ m0 and go to Step 4.

4. Simulation study

To investigate the performance of the proposed method, a simulation study of a known vibratory system
was carried out. The SDOF system is as follows:

5 €xðtÞ þ 20 _xðtÞ þ 4000xðtÞ ¼ dðtÞ. (9)

The accelerations were generated using the Wilson-y method with an impact force of 1N in Eq. (9). The
sampling time was 0.005 s, a value shorter than the Nyquist sampling time of 0.0176 s, improving the accuracy
of the parameters in the ARMA model, and therefore improving the accuracy of the calculated natural
frequency and damping ratio. Fig. 2 shows the generated accelerations and Fig. 3 shows the FFT of the
accelerations.

After the data were generated, they were treated as if the original system was unknown, and the system
parameters were identified and compared with Eq. (9) using the method outlined in the previous section. The
natural frequency and damping ratio were subsequently calculated using the estimated model parameters from
Fig. 2. The accelerations of a vibratory system.

Fig. 3. The FFT of the accelerations.
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Table 1

The ARMA(2,1) parameters and comparison of identified and theoretical system characteristics

The parameters of ARMA f1 f2 y1
1.9605 0.9803 0.0044

Natural frequency Identified Theoretical

4.5078Hz 4.5016Hz

Damping ratio 0.0702 0.0707

D.K. Baek et al. / Journal of Sound and Vibration 295 (2006) 428–435432
Eqs. (4) and (5). The data between ‘a’ and ‘b’ in Fig. 2 were used for the ARMA(2,1), because the data outside
the perimeter ‘a’ and ‘b’ do not relate to the system characteristics. The amplitude of the acceleration at ‘b’ was
5% of the maximum amplitude, and all modeling of the ARMA in this research was performed in the same
manner. Since the original system was in fact known, the natural frequency and damping ratio could be
calculated directly from Eq. (9), and are also given in Table 1 for comparison.

The extracted values show a remarkable match with those calculated theoretically. Using the natural
frequency and the damping ratio calculated using the ARMA(2,1) model, the equation of motion from Eq. (7)
can be derived:

€xðtÞ þ 3:9766 _xðtÞ þ 802:2177xðtÞ ¼ dðtÞ. (10)

For a complete modeling, the bisection method was utilized as shown in Fig. 1 with the following initial
conditions: m1 ¼ 0:01, m2 ¼ 1000 and t0 ¼ 0:0089. The RMS of the accelerations equaled 0.89 and the
tolerance value was set to 0.0089, 1% of the RMS value. Using these initial conditions, the program for
finding these parameters converged to m0 ¼ 5:0059 after 12 iterations. The result of the modeling is as follows:

5:0059 €xðtÞ þ 19:9064 _xðtÞ þ 4015:7737xðtÞ ¼ dðtÞ. (11)

The modeled Eq. (11) is in good agreement with the known system of Eq. (9).

5. Experimental results: modeling of an end milling

The feasibility of the modeling procedure is illustrated by applying it to end milling. Fig. 4 shows the
experimental setup used for the impact test. The spindle of a vertical milling machine can be assumed to be a
rigid body, and the experiment was carried out on an end mill as shown in Fig. 4.

A vice fixed the end mill, the accelerometers being attached on the end mill. The impact hammer excited the
end of the end mill, and the respective detectors measured the impact forces and the accelerations. The
diameter of the end mill was 12mm and fixed to a length of 80mm. Fig. 5 shows the accelerations of the end
mill and Fig. 6 is the FFT of the accelerations.

The measured impact force of the end mill was 157N and the sampling frequency was 6000Hz. The natural
frequency and the damping ratio were calculated as in the previous section and are presented in Table 2 with
the ARMA parameters.

The equation of motion can be written with the natural frequency and the damping ratio as in Eq. (7):

€xðtÞ þ 195:2 _xðtÞ þ 5:6370064� 107xðtÞ ¼ dðtÞ. (12)

The bisection method was used as in the previous section with the following initial conditions: m1 ¼ 0:1,
m2 ¼ 100, and t0 ¼ 0:001. With these initial conditions, the program for finding parameters converged to
m0 ¼ 0:9 after 17 iterations. The result of the modeling is as follows:

0:9 €xðtÞ þ 175:8 _xðtÞ þ 5:07056987� 107xðtÞ ¼ dðtÞ, (13)

which means that m ¼ 0:9 kg, c ¼ 175:8N=mm=s and k ¼ 5:07056987� 107 N=mm.
To investigate the accuracy of the modeling, the accelerations were generated using the Wilson-y method on

Eq. (13), using an impact force of 157N and a sampling frequency of 6000Hz, the same values as the
experiment. Fig. 7 shows the generated accelerations and Fig. 8 shows the FFT of the accelerations. Fig. 9
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Fig. 5. The measured accelerations of the end mill.

Fig. 6. The FFT of the measured accelerations.

Table 2

The ARMA(2,1) parameters and the characteristics of the end mill

The parameters of ARMA f1 f2 y1
0.6175 �0.9670 �0.0052

Natural frequency 1195Hz

Damping ratio 0.013

Fig. 4. Experimental setup.

D.K. Baek et al. / Journal of Sound and Vibration 295 (2006) 428–435 433
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Fig. 8. The FFT of the generated accelerations.

Fig. 9. The comparison of the accelerations in the end mill: experimental data (—), generated data (yy).

Fig. 7. The accelerations of the modeled system.

Fig. 10. The comparison of the FFTs in the end mill: experimental data (—), generated data (yy).

D.K. Baek et al. / Journal of Sound and Vibration 295 (2006) 428–435434
shows a comparison of the accelerations from the experiment of Fig. 5 with the modeling of Fig. 7. Fig. 10
shows the FFTs of the accelerations. The results from the modeling are in good agreement with the
experiment.

6. Conclusions

This paper presents parameter identification for the linear SDOF mechanical system using the ARMA
model, and the bisection method with measured accelerations by the impact test is presented. The proposed
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method follows the concept of computing the mass, the damping coefficient and the stiffness of the linear
SDOF system if the parameters are considered to be unknowns.

The natural frequency and the damping ration were obtained from the measured accelerations using the
ARMA(2,1) model, and the mass, the damping coefficient and the stiffness of the SDOF system were
determined using the bisection method with the measured impact force.

The simulation study was conducted on the numerically integrated accelerations from the known SDOF
system. The proposed method experimentally applied to the cutting system with the end mill to demonstrate
the validity and advantages. The simulation and experiment results show the proposed method offers
parameter identification with good quality for the free acceleration response data of the SDOF system.
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